Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dis Aquat Organ ; 158: 81-99, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661140

RESUMEN

Since 2014, mass mortalities of mussels Mytilus spp. have occurred in production areas on the Atlantic coast of France. The aetiology of these outbreaks remained unknown until the bacterium Francisella halioticida was detected in some mussel mortality cases. This retrospective study was conducted to assess the association between F. halioticida and these mussel mortalities. Mussel batches (n = 45) from the Atlantic coast and English Channel were selected from archived individual samples (n = 863) collected either during or outside of mortality events between 2014 and 2017. All mussels were analysed by real-time PCR assays targeting F. halioticida; in addition, 185 were analysed using histological analysis and 178 by 16S rRNA metabarcoding. F. halioticida DNA was detected by real-time PCR and 16S rRNA metabarcoding in 282 and 34 mussels, respectively. Among these individuals, 82% (real-time PCR analysis) and 76% (16S rRNA metabarcoding analysis) were sampled during a mortality event. Histological analyses showed that moribund individuals had lesions mainly characterized by necrosis, haemocyte infiltration and granulomas. Risk factor analysis showed that mussel batches with more than 20% of PCR-positive individuals were more likely to have been sampled during a mortality event, and positive 16S rRNA metabarcoding batches increased the strength of the association with mortality by 11.6 times. The role of F. halioticida in mussel mortalities was determined by reviewing the available evidence. To this end, a causation criteria grid, tailored to marine diseases and molecular pathogen detection tools, allowed more evidence to be gathered on the causal role of this bacterium in mussel mortalities.


Asunto(s)
Francisella , ARN Ribosómico 16S , Animales , Francisella/genética , Francisella/aislamiento & purificación , Francisella/clasificación , Francia/epidemiología , ARN Ribosómico 16S/genética , Mytilus/microbiología , Estudios Retrospectivos
2.
Reprod Domest Anim ; 58 Suppl 2: 93-101, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37312640

RESUMEN

Abortions in horses represent an important health and economic challenge for equine industry. Primary causes of abortion are divided in non-infectious and infectious. Non-infectious causes include abnormalities of foetal appendices (umbilical cord and placenta essentially), abnormalities of gestation, maternal and foetal origins. Infectious abortions are caused in almost cases by bacterial infections, followed by viruses, fungi and parasites. New abortive pathogens (as Leptospira, Neospora caninum, Coxiella burnetii, Chlamydophila abortus, and) have been confirmed in equines by comparison already known for their abortive properties in human or in other species. Despite an increasing number of autopsies and continuous improvements in diagnostic tools, in management and surveillance, 20%-40% of the causes of equine abortion remain unknown depending on the country. To increase the likelihood of a definitive diagnosis in cases of abortion and stillbirth in horses, new diagnostic approaches are needed.


Asunto(s)
Infecciones Bacterianas , Coxiella burnetii , Enfermedades de los Caballos , Embarazo , Femenino , Humanos , Animales , Caballos , Estudios de Seguimiento , Aborto Veterinario/epidemiología , Infecciones Bacterianas/veterinaria , Placenta , Enfermedades de los Caballos/diagnóstico , Enfermedades de los Caballos/etiología , Enfermedades de los Caballos/terapia
3.
J Equine Vet Sci ; 128: 104869, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37339699

RESUMEN

A total of 752 horses were involved in the CES Valencia Spring Tour 2021. Due to an equine herpesvirus-1 (EHV-1) outbreak, the competition was cancelled and the site was locked down. The objective of this study was to describe epidemiological, clinical, diagnostic, and outcome data of the 160 horses remaining in Valencia. Clinical and quantitative polymerase chain reaction (qPCR) data were analysed for 60 horses in a retrospective case-control observational study. The risk of developing clinical manifestations was explored using a logistic regression approach. EHV-1 was detected by qPCR, genotyped as A2254 (ORF30) and isolated on cell culture. From the 60 horses, 50 (83.3%) showed fever, 30 horses (50%) showed no further signs and 20 (40%) showed neurological signs, with eight horses (16%) hospitalised, of which two died (3%). Stallions and geldings were six times more likely to develop EHV-1 infection compared to mares. Horses older than 9 years, or housed in the middle of the tent were more likely to develop EHV-1 myeloencephalopathy (EHM). These data show that for EHV-1 infection, the risk factor was male sex. For EHM the risk factors were age > 9-year old and location in the middle of the tent. These data highlight the crucial role of stable design, position, and ventilation in EHV-outbreaks. It also showed that PCR testing of the horses was important to manage the quarantine.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Équido 1 , Enfermedades de los Caballos , Caballos , Animales , Masculino , Femenino , Herpesvirus Équido 1/genética , Estudios Retrospectivos , Enfermedades de los Caballos/epidemiología , Estudios de Casos y Controles , Brotes de Enfermedades/veterinaria , Infecciones por Herpesviridae/epidemiología , Infecciones por Herpesviridae/veterinaria
4.
Transbound Emerg Dis ; 69(5): e2041-e2058, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35353448

RESUMEN

The Pacific cupped oyster Crassostrea gigas is one of the most 'globalized' marine invertebrates and its production is predominant in many parts of the world including Europe. However, it is threatened by mortality events associated with pathogenic microorganisms such as the virus OsHV-1 and the bacteria Vibrio aestuarianus. C. gigas is also a host for protozoan parasites including haplosporidians. In contrast with Haplosporidium nelsoni previously detected in Europe, H. costale was considered exotic although its presence in French oysters was suggested in the 1980s based on ultrastructural examination. Here, a combination of light and transmission electron microscopy, PCR and sequencing allowed characterizing the presence of the parasite in the context of low mortality events which occurred in 2019 in France. Histological observation revealed the presence of uninucleated, plasmodial and spore stages within the connective tissues of some oysters. Ultrastructural features were similar to H. costale ones in particular the presence of axe-shaped haplosporosomes in spore cytoplasms. Three fragments of the genome including partial small subunit rRNA gene, the ITS-1, 5.8S and ITS-2 array and part of the actin gene were successfully sequenced and grouped with H. costale homologous sequences. This is the first time that the presence of H. costale was confirmed in C. gigas in France. Furthermore, a TaqMan real-time PCR assay was developed and validated [DSe = 92.6% (78.2-99.8) and DSp = 95.5% (92.3-98.6)] to enable the rapid and specific detection of the parasite. The application of the PCR assay on archived samples revealed that the parasite has been present in French oyster populations at least since 2008. Considering the little information available on this parasite, the newly developed TaqMan assay will be very helpful to investigate the temporal and geographic distribution and the life cycle of the parasite in France and more generally in C. gigas geographic range.


Asunto(s)
Crassostrea , Parásitos , Actinas , Animales , Secuencia de Bases , Crassostrea/microbiología , Crassostrea/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
5.
Prev Vet Med ; 194: 105419, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274864

RESUMEN

To keep pace with rising opportunities for disease emergence and spread, surveillance in aquaculture must enable the early detection of both known and new pathogens. Conventional surveillance systems (designed to provide proof of disease freedom) may not support detection outside of periodic sampling windows, leaving substantial blind spots to pathogens that emerge in other times and places. To address this problem, we organized an expert panel to envision optimal systems for early disease detection, focusing on Ostreid herpesvirus 1 (OsHV-1), a pathogen of panzootic consequence to oyster industries. The panel followed an integrative group process to identify and weight surveillance system traits perceived as critical to the early detection of OsHV-1. Results offer a road map with fourteen factors to consider when building surveillance systems geared to early detection; factor weights can be used by planners and analysts to compare the relative value of different designs or enhancements. The results were also used to build a simple, but replicable, model estimating the system sensitivity (SSe) of observational surveillance and, in turn, the confidence in disease freedom that negative reporting can provide. Findings suggest that optimally designed observational systems can contribute substantially to both early detection and disease freedom confidence. In contrast, active surveillance as a singular system is likely insufficient for early detection. The strongest systems combined active with observational surveillance and engaged joint industry and government involvement: results suggest that effective partnerships can generate highly sensitive systems, whereas ineffective partnerships may seriously erode early detection capability. Given the costs of routine testing, and the value (via averted losses) of early detection, we conclude that observational surveillance is an important and potentially very effective tool for health management and disease prevention on oyster farms, but one that demands careful planning and participation. This evaluation centered on OsHV-1 detection in farmed oyster populations. However, many of the features likely generalize to other pathogens and settings, with the important caveat that the pathogens need to manifest via morbidity or mortality events in the species, life stages and environments under observation.


Asunto(s)
Crassostrea , Infecciones por Herpesviridae/veterinaria , Herpesviridae , Animales , Acuicultura , Crassostrea/virología , Infecciones por Herpesviridae/diagnóstico
6.
Front Vet Sci ; 6: 142, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139636

RESUMEN

Vibrio aestuarianus is a bacterium related to mortality outbreaks in Pacific oysters, Crassostrea gigas, in France, Ireland, and Scotland since 2011. Knowledge about its transmission dynamics is still lacking, impairing guidance to prevent and control the related disease spread. Mathematical modeling is a relevant approach to better understand the determinants of a disease and predict its dynamics in imperfectly observed pathosystems. We developed here the first marine epidemiological model to estimate the key parameters of V. aestuarianus infection at a local scale in a small and closed oyster population under controlled laboratory conditions. Using a compartmental model accounting for free-living bacteria in seawater, we predicted the infection dynamics using dedicated and model-driven collected laboratory experimental transmission data. We estimated parameters and showed that waterborne transmission of V. aestuarianus is possible under experimental conditions, with a basic reproduction number R0 of 2.88 (95% CI: 1.86; 3.35), and a generation time of 5.5 days. Our results highlighted a bacterial dose-dependent transmission of vibriosis at local scale. Global sensitivity analyses indicated that the bacteria shedding rate, the concentration of bacteria in seawater that yields a 50% chance of catching the infection, and the initial bacterial exposure dose W0 were three critical parameters explaining most of the variation in the selected model outputs related to disease spread, i.e., R0, the maximum prevalence, oyster survival curve, and bacteria concentration in seawater. Prevention and control should target the exposure of oysters to bacterial concentration in seawater. This combined laboratory-modeling approach enabled us to maximize the use of information obtained through experiments. The identified key epidemiological parameters should be better refined by further dedicated laboratory experiments. These results revealed the importance of multidisciplinary approaches to gain consistent insights into the marine epidemiology of oyster diseases.

7.
Vet Res ; 48(1): 32, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28549482

RESUMEN

This study investigated oyster infection dynamics by different strains of Vibrio aestuarianus isolated before and after the apparent re-emergence of this pathogen observed in France in 2011. We conducted experiments to compare minimal infective dose, lethal dose 50 and bacterial shedding for six V. aestuarianus strains. Whatever the strain used, mortality was induced in juvenile oysters by intramuscular injection and reached 90-100% of mortality within 5 days. Moreover, bacterial shedding was comparable among strains and reached its maximum after 20 h (≈10 EXP5 bacteria/mL/animal). Similarly, our first estimations of lethal dose 50 were comparable among strains (minimal infective dose around 0.4 × 10EXP5 bacteria/mL and LD50 around 10EXP5 bacteria/mL) by using seawater containing freshly shed bacteria. These results indicate that, at least with these criteria, despite V. aestuarianus strains genetic diversity, the disease process is similar. The strains isolated after the apparent re-emergence of the bacteria in 2011, do not present a more acute virulence phenotype than the reference strains isolated between 2002 and 2007. Finally, our study provides original and noteworthy data indicating that infected oysters shed bacteria at a level above the threshold of LD50 a few days before they die, meaning that infection is expected to spread in a susceptible population.


Asunto(s)
Crassostrea/microbiología , Vibriosis/veterinaria , Vibrio , Animales , Derrame de Bacterias , Organismos Libres de Patógenos Específicos , Vibrio/crecimiento & desarrollo , Vibrio/patogenicidad , Vibriosis/microbiología
8.
Philos Trans R Soc Lond B Biol Sci ; 371(1689)2016 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26880845

RESUMEN

Emerging diseases pose a recurrent threat to bivalve aquaculture. Recently, massive mortality events in the Pacific oyster Crassostrea gigas associated with the detection of a microvariant of the ostreid herpesvirus 1 (OsHV-1µVar) have been reported in Europe, Australia and New Zealand. Although the spread of disease is often viewed as a governance failure, we suggest that the development of protective measures for bivalve farming is presently held back by the lack of key scientific knowledge. In this paper, we explore the case for an integrated approach to study the management of bivalve disease, using OsHV-1 as a case study. Reconsidering the key issues by incorporating multidisciplinary science could provide a holistic understanding of OsHV-1 and increase the benefit of research to policymakers.


Asunto(s)
Acuicultura/métodos , Herpesviridae/fisiología , Ostreidae/microbiología , Animales , Enfermedades Transmisibles Emergentes/prevención & control , Interacciones Huésped-Patógeno , Factores de Riesgo
9.
Appl Environ Microbiol ; 80(17): 5419-26, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973071

RESUMEN

A number of bivalve species worldwide, including the Pacific oyster, Crassostrea gigas, have been affected by mass mortality events associated with herpesviruses, resulting in significant losses. A particular herpesvirus was purified from naturally infected larval Pacific oysters, and its genome was completely sequenced. This virus has been classified as Ostreid herpesvirus 1 (OsHV-1) within the family Malacoherpesviridae. Since 2008, mass mortality outbreaks among C. gigas in Europe have been related to the detection of a variant of OsHV-1 called µVar. Additional data are necessary to better describe mortality events in relation to environmental-parameter fluctuations and OsHV-1 detection. For this purpose, a single batch of Pacific oyster spat was deployed in 4 different locations in the Marennes-Oleron area (France): an oyster pond ("claire"), a shellfish nursery, and two locations in the field. Mortality rates were recorded based on regular observation, and samples were collected to search for and quantify OsHV-1 DNA by real-time PCR. Although similar massive mortality rates were reported at the 4 sites, mortality was detected earlier in the pond and in the nursery than at both field sites. This difference may be related to earlier increases in water temperature. Mass mortality was observed among oysters a few days after increases in the number of PCR-positive oysters and viral-DNA amounts were recorded. An initial increment in the number of PCR-positive oysters was reported at both field sites during the survey in the absence of significant mortality. During this period, the water temperature was below 16°C.


Asunto(s)
Crassostrea/virología , Herpesviridae/aislamiento & purificación , Herpesviridae/fisiología , Replicación Viral , Animales , ADN Viral/análisis , ADN Viral/genética , ADN Viral/aislamiento & purificación , Francia , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Supervivencia , Temperatura , Carga Viral , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...